문제
RGB거리에는 집이 N개 있다. 거리는 선분으로 나타낼 수 있고, 1번 집부터 N번 집이 순서대로 있다.
집은 빨강, 초록, 파랑 중 하나의 색으로 칠해야 한다. 각각의 집을 빨강, 초록, 파랑으로 칠하는 비용이 주어졌을 때, 아래 규칙을 만족하면서 모든 집을 칠하는 비용의 최솟값을 구해보자.
- 1번 집의 색은 2번 집의 색과 같지 않아야 한다.
- N번 집의 색은 N-1번 집의 색과 같지 않아야 한다.
- i(2 ≤ i ≤ N-1)번 집의 색은 i-1번, i+1번 집의 색과 같지 않아야 한다.
입력
첫째 줄에 집의 수 N(2 ≤ N ≤ 1,000)이 주어진다. 둘째 줄부터 N개의 줄에는 각 집을 빨강, 초록, 파랑으로 칠하는 비용이 1번 집부터 한 줄에 하나씩 주어진다. 집을 칠하는 비용은 1,000보다 작거나 같은 자연수이다.
출력
첫째 줄에 모든 집을 칠하는 비용의 최솟값을 출력한다.
예제 입력 1
3
26 40 83
49 60 57
13 89 99
예제 출력 1
96
예제 입력 2
3
1 100 100
100 1 100
100 100 1
예제 출력 2
3
예제 입력 3
3
1 100 100
100 100 100
1 100 100
예제 출력 3
102
예제 입력 4
6
30 19 5
64 77 64
15 19 97
4 71 57
90 86 84
93 32 91
예제 출력 4
208
예제 입력 5
8
71 39 44
32 83 55
51 37 63
89 29 100
83 58 11
65 13 15
47 25 29
60 66 19
예제 출력 5
253
#include <iostream>
using namespace std;
enum RGB
{
R = 0,
G = 1,
B = 2,
};
int house[1000][3];
int n;
int dp[1000][3];
int GetResult(int n, RGB color)
{
if (n < 1)
{
return house[0][color];
}
if (dp[n][color] == 0)
{
int min = -1;
for (int i = 0; i < 3; i++)
{
if (i != color)
{
int temp = GetResult(n - 1, (RGB)i);
if (min == -1)
{
min = temp;
}
else
{
min = temp < min ? temp : min;
}
}
}
dp[n][color] = min + house[n][color];
}
return dp[n][color];
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
RGB rgb;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> house[i][R] >> house[i][G] >> house[i][B];
}
int min = -1;
for (int i = 0; i < 3; i++)
{
int temp = GetResult(n - 1, (RGB)i);
if (min == -1)
{
min = temp;
}
else
{
min = temp < min ? temp : min;
}
}
cout << min;
return 0;
}
728x90
반응형
'알고리즘 > solved.ac' 카테고리의 다른 글
[class4] (백준 1932) 정수 삼각형 (0) | 2022.01.26 |
---|---|
[class4] (백준 1629) 곱셈 (0) | 2022.01.24 |
[class4] (백준 15666) N과 M (12) (0) | 2022.01.22 |
[class4] (백준 15663) N과 M (9) (0) | 2022.01.21 |
[class4] (백준 11725) 트리의 부모 찾기 (0) | 2022.01.20 |